FTM Price: $0.475333 (-4.69%)
Gas: 4.8 GWei

Contract Diff Checker

Contract Name:
ThreeOmb

Contract Source Code:

File 1 of 1 : ThreeOmb

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}


// File @openzeppelin/contracts/token/ERC20/[email protected]



pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}


// File @openzeppelin/contracts/math/[email protected]



pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}


// File @openzeppelin/contracts/token/ERC20/[email protected]



pragma solidity >=0.6.0 <0.8.0;



/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name_, string memory symbol_) public {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal virtual {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}


// File @openzeppelin/contracts/token/ERC20/[email protected]



pragma solidity >=0.6.0 <0.8.0;


/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    using SafeMath for uint256;

    /**
     * @dev Destroys `amount` tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 amount) public virtual {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, deducting from the caller's
     * allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `amount`.
     */
    function burnFrom(address account, uint256 amount) public virtual {
        uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");

        _approve(account, _msgSender(), decreasedAllowance);
        _burn(account, amount);
    }
}


// File @openzeppelin/contracts/math/[email protected]



pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow, so we distribute
        return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
    }
}


// File contracts/lib/SafeMath8.sol



pragma solidity 0.6.12;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath8 {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint8 a, uint8 b) internal pure returns (uint8) {
        uint8 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint8 a, uint8 b) internal pure returns (uint8) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint8 a, uint8 b, string memory errorMessage) internal pure returns (uint8) {
        require(b <= a, errorMessage);
        uint8 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint8 a, uint8 b) internal pure returns (uint8) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint8 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint8 a, uint8 b) internal pure returns (uint8) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint8 a, uint8 b, string memory errorMessage) internal pure returns (uint8) {
        require(b > 0, errorMessage);
        uint8 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint8 a, uint8 b) internal pure returns (uint8) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint8 a, uint8 b, string memory errorMessage) internal pure returns (uint8) {
        require(b != 0, errorMessage);
        return a % b;
    }
}


// File @openzeppelin/contracts/GSN/[email protected]



pragma solidity >=0.6.0 <0.8.0;


// File @openzeppelin/contracts/access/[email protected]



pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor () internal {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}


// File contracts/owner/Operator.sol



pragma solidity 0.6.12;


contract Operator is Context, Ownable {
    address private _operator;

    event OperatorTransferred(address indexed previousOperator, address indexed newOperator);

    constructor() internal {
        _operator = _msgSender();
        emit OperatorTransferred(address(0), _operator);
    }

    function operator() public view returns (address) {
        return _operator;
    }

    modifier onlyOperator() {
        require(_operator == msg.sender, "operator: caller is not the operator");
        _;
    }

    function isOperator() public view returns (bool) {
        return _msgSender() == _operator;
    }

    function transferOperator(address newOperator_) public onlyOwner {
        _transferOperator(newOperator_);
    }

    function _transferOperator(address newOperator_) internal {
        require(newOperator_ != address(0), "operator: zero address given for new operator");
        emit OperatorTransferred(address(0), newOperator_);
        _operator = newOperator_;
    }
}


// File contracts/interfaces/IOracle.sol



pragma solidity 0.6.12;

interface IOracle {
    function update() external;

    function consult(address _token, uint256 _amountIn) external view returns (uint144 amountOut);

    function twap(address _token, uint256 _amountIn) external view returns (uint144 _amountOut);
}


contract ThreeOmb is ERC20Burnable, Operator {
    using SafeMath8 for uint8;
    using SafeMath for uint256;

    // Initial distribution for the first 24h genesis pools
    uint256 public constant INITIAL_GENESIS_POOL_DISTRIBUTION = 25000 ether;
    // Initial distribution for the day 2-5 TOMB-WFTM LP -> TOMB pool
    uint256 public constant INITIAL_TOMB_POOL_DISTRIBUTION = 0 ether;
    // Distribution for airdrops wallet
    uint256 public constant INITIAL_AIRDROP_WALLET_DISTRIBUTION = 0 ether;

    // Have the rewards been distributed to the pools
    bool public rewardPoolDistributed = false;

    /* ================= Taxation =============== */
    // Address of the Oracle
    address public tombOracle;
    // Address of the Tax Office
    address public taxOffice;

    // Current tax rate
    uint256 public taxRate;
    // Price threshold below which taxes will get burned
    uint256 public burnThreshold = 1.10e18;
    // Address of the tax collector wallet
    address public taxCollectorAddress;

    // Should the taxes be calculated using the tax tiers
    bool public autoCalculateTax;

    // Tax Tiers
    uint256[] public taxTiersTwaps = [0, 5e17, 6e17, 7e17, 8e17, 9e17, 9.5e17, 1e18, 1.05e18, 1.10e18, 1.20e18, 1.30e18, 1.40e18, 1.50e18];
    uint256[] public taxTiersRates = [2000, 1900, 1800, 1700, 1600, 1500, 1500, 1500, 1500, 1400, 900, 400, 200, 100];

    // Sender addresses excluded from Tax
    mapping(address => bool) public excludedAddresses;

    event TaxOfficeTransferred(address oldAddress, address newAddress);

    modifier onlyTaxOffice() {
        require(taxOffice == msg.sender, "Caller is not the tax office");
        _;
    }

    modifier onlyOperatorOrTaxOffice() {
        require(isOperator() || taxOffice == msg.sender, "Caller is not the operator or the tax office");
        _;
    }

    /**
     * @notice Constructs the TOMB ERC-20 contract.
     */
    constructor(uint256 _taxRate, address _taxCollectorAddress) public ERC20("3OMB Token", "3OMB") {
        // Mints 1 TOMB to contract creator for initial pool setup
        require(_taxRate < 10000, "tax equal or bigger to 100%");
        //require(_taxCollectorAddress != address(0), "tax collector address must be non-zero address");

        excludeAddress(address(this));

        _mint(msg.sender, 1 ether);
        taxRate = _taxRate;
        taxCollectorAddress = _taxCollectorAddress;
    }

    /* ============= Taxation ============= */

    function getTaxTiersTwapsCount() public view returns (uint256 count) {
        return taxTiersTwaps.length;
    }

    function getTaxTiersRatesCount() public view returns (uint256 count) {
        return taxTiersRates.length;
    }

    function isAddressExcluded(address _address) public view returns (bool) {
        return excludedAddresses[_address];
    }

    function setTaxTiersTwap(uint8 _index, uint256 _value) public onlyTaxOffice returns (bool) {
        require(_index >= 0, "Index has to be higher than 0");
        require(_index < getTaxTiersTwapsCount(), "Index has to lower than count of tax tiers");
        if (_index > 0) {
            require(_value > taxTiersTwaps[_index - 1]);
        }
        if (_index < getTaxTiersTwapsCount().sub(1)) {
            require(_value < taxTiersTwaps[_index + 1]);
        }
        taxTiersTwaps[_index] = _value;
        return true;
    }

    function setTaxTiersRate(uint8 _index, uint256 _value) public onlyTaxOffice returns (bool) {
        require(_index >= 0, "Index has to be higher than 0");
        require(_index < getTaxTiersRatesCount(), "Index has to lower than count of tax tiers");
        taxTiersRates[_index] = _value;
        return true;
    }

    function setBurnThreshold(uint256 _burnThreshold) public onlyTaxOffice returns (bool) {
        burnThreshold = _burnThreshold;
    }

    function _getTombPrice() internal view returns (uint256 _tombPrice) {
        try IOracle(tombOracle).consult(address(this), 1e18) returns (uint144 _price) {
            return uint256(_price);
        } catch {
            revert("Tomb: failed to fetch TOMB price from Oracle");
        }
    }

    function _updateTaxRate(uint256 _tombPrice) internal returns (uint256){
        if (autoCalculateTax) {
            for (uint8 tierId = uint8(getTaxTiersTwapsCount()).sub(1); tierId >= 0; --tierId) {
                if (_tombPrice >= taxTiersTwaps[tierId]) {
                    require(taxTiersRates[tierId] < 10000, "tax equal or bigger to 100%");
                    taxRate = taxTiersRates[tierId];
                    return taxTiersRates[tierId];
                }
            }
        }
    }

    function enableAutoCalculateTax() public onlyTaxOffice {
        autoCalculateTax = true;
    }

    function disableAutoCalculateTax() public onlyTaxOffice {
        autoCalculateTax = false;
    }

    function setTombOracle(address _tombOracle) public onlyOperatorOrTaxOffice {
        require(_tombOracle != address(0), "oracle address cannot be 0 address");
        tombOracle = _tombOracle;
    }

    function setTaxOffice(address _taxOffice) public onlyOperatorOrTaxOffice {
        require(_taxOffice != address(0), "tax office address cannot be 0 address");
        emit TaxOfficeTransferred(taxOffice, _taxOffice);
        taxOffice = _taxOffice;
    }

    function setTaxCollectorAddress(address _taxCollectorAddress) public onlyTaxOffice {
        require(_taxCollectorAddress != address(0), "tax collector address must be non-zero address");
        taxCollectorAddress = _taxCollectorAddress;
    }

    function setTaxRate(uint256 _taxRate) public onlyTaxOffice {
        require(!autoCalculateTax, "auto calculate tax cannot be enabled");
        require(_taxRate < 10000, "tax equal or bigger to 100%");
        taxRate = _taxRate;
    }

    function excludeAddress(address _address) public onlyOperatorOrTaxOffice returns (bool) {
        require(!excludedAddresses[_address], "address can't be excluded");
        excludedAddresses[_address] = true;
        return true;
    }

    function includeAddress(address _address) public onlyOperatorOrTaxOffice returns (bool) {
        require(excludedAddresses[_address], "address can't be included");
        excludedAddresses[_address] = false;
        return true;
    }

    /**
     * @notice Operator mints TOMB to a recipient
     * @param recipient_ The address of recipient
     * @param amount_ The amount of TOMB to mint to
     * @return whether the process has been done
     */
    function mint(address recipient_, uint256 amount_) public onlyOperator returns (bool) {
        uint256 balanceBefore = balanceOf(recipient_);
        _mint(recipient_, amount_);
        uint256 balanceAfter = balanceOf(recipient_);

        return balanceAfter > balanceBefore;
    }

    function burn(uint256 amount) public override {
        super.burn(amount);
    }

    function burnFrom(address account, uint256 amount) public override onlyOperator {
        super.burnFrom(account, amount);
    }

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        uint256 currentTaxRate = 0;
        bool burnTax = false;

        if (autoCalculateTax) {
            uint256 currentTombPrice = _getTombPrice();
            currentTaxRate = _updateTaxRate(currentTombPrice);
            if (currentTombPrice < burnThreshold) {
                burnTax = true;
            }
        }


        if (currentTaxRate == 0 || excludedAddresses[sender]) {
            _transfer(sender, recipient, amount);
        } else {
            _transferWithTax(sender, recipient, amount, burnTax);
        }

        _approve(sender, _msgSender(), allowance(sender, _msgSender()).sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    function _transferWithTax(
        address sender,
        address recipient,
        uint256 amount,
        bool burnTax
    ) internal returns (bool) {
        uint256 taxAmount = amount.mul(taxRate).div(10000);
        uint256 amountAfterTax = amount.sub(taxAmount);

        if(burnTax) {
            // Burn tax
            super.burnFrom(sender, taxAmount);
        } else {
            // Transfer tax to tax collector
            _transfer(sender, taxCollectorAddress, taxAmount);
        }

        // Transfer amount after tax to recipient
        _transfer(sender, recipient, amountAfterTax);

        return true;
    }

    /**
     * @notice distribute to reward pool (only once)
     */
    function distributeReward(
        address _genesisPool
        //address _tombPool,
        //address _airdropWallet
    ) external onlyOperator {
        require(!rewardPoolDistributed, "only can distribute once");
        require(_genesisPool != address(0), "!_genesisPool");
        //require(_tombPool != address(0), "!_tombPool");
        //require(_airdropWallet != address(0), "!_airdropWallet");
        rewardPoolDistributed = true;
        _mint(_genesisPool, INITIAL_GENESIS_POOL_DISTRIBUTION);
        //_mint(_tombPool, INITIAL_TOMB_POOL_DISTRIBUTION);
        //_mint(_airdropWallet, INITIAL_AIRDROP_WALLET_DISTRIBUTION);
    }

    function governanceRecoverUnsupported(
        IERC20 _token,
        uint256 _amount,
        address _to
    ) external onlyOperator {
        _token.transfer(_to, _amount);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):