FTM Price: $0.412902 (+7.07%)
 

Overview

FTM Balance

Fantom LogoFantom LogoFantom Logo0 FTM

FTM Value

$0.00

Sponsored

Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 1 internal transaction

Parent Transaction Hash Block From To
494444342022-10-18 9:46:01690 days ago1666086361  Contract Creation0 FTM
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
DiamondLoupeFacet

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion
File 1 of 8 : DiamondLoupeFacet.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import { LibDiamond } from "../Libraries/LibDiamond.sol";
import { IDiamondLoupe } from "../Interfaces/IDiamondLoupe.sol";
import { IERC165 } from "../Interfaces/IERC165.sol";

contract DiamondLoupeFacet is IDiamondLoupe, IERC165 {
    // Diamond Loupe Functions
    ////////////////////////////////////////////////////////////////////
    /// These functions are expected to be called frequently by tools.
    //
    // struct Facet {
    //     address facetAddress;
    //     bytes4[] functionSelectors;
    // }

    /// @notice Gets all facets and their selectors.
    /// @return facets_ Facet
    function facets() external view override returns (Facet[] memory facets_) {
        LibDiamond.DiamondStorage storage ds = LibDiamond.diamondStorage();
        uint256 numFacets = ds.facetAddresses.length;
        facets_ = new Facet[](numFacets);
        for (uint256 i = 0; i < numFacets; ) {
            address facetAddress_ = ds.facetAddresses[i];
            facets_[i].facetAddress = facetAddress_;
            facets_[i].functionSelectors = ds.facetFunctionSelectors[facetAddress_].functionSelectors;
            unchecked {
                ++i;
            }
        }
    }

    /// @notice Gets all the function selectors provided by a facet.
    /// @param _facet The facet address.
    /// @return facetFunctionSelectors_
    function facetFunctionSelectors(address _facet)
        external
        view
        override
        returns (bytes4[] memory facetFunctionSelectors_)
    {
        LibDiamond.DiamondStorage storage ds = LibDiamond.diamondStorage();
        facetFunctionSelectors_ = ds.facetFunctionSelectors[_facet].functionSelectors;
    }

    /// @notice Get all the facet addresses used by a diamond.
    /// @return facetAddresses_
    function facetAddresses() external view override returns (address[] memory facetAddresses_) {
        LibDiamond.DiamondStorage storage ds = LibDiamond.diamondStorage();
        facetAddresses_ = ds.facetAddresses;
    }

    /// @notice Gets the facet that supports the given selector.
    /// @dev If facet is not found return address(0).
    /// @param _functionSelector The function selector.
    /// @return facetAddress_ The facet address.
    function facetAddress(bytes4 _functionSelector) external view override returns (address facetAddress_) {
        LibDiamond.DiamondStorage storage ds = LibDiamond.diamondStorage();
        facetAddress_ = ds.selectorToFacetAndPosition[_functionSelector].facetAddress;
    }

    // This implements ERC-165.
    function supportsInterface(bytes4 _interfaceId) external view override returns (bool) {
        LibDiamond.DiamondStorage storage ds = LibDiamond.diamondStorage();
        return ds.supportedInterfaces[_interfaceId];
    }
}

File 2 of 8 : GenericErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

error TokenAddressIsZero();
error TokenNotSupported();
error CannotBridgeToSameNetwork();
error ZeroPostSwapBalance();
error NoSwapDataProvided();
error NativeValueWithERC();
error ContractCallNotAllowed();
error NullAddrIsNotAValidSpender();
error NullAddrIsNotAnERC20Token();
error NoTransferToNullAddress();
error NativeAssetTransferFailed();
error InvalidBridgeConfigLength();
error InvalidAmount();
error InvalidContract();
error InvalidConfig();
error UnsupportedChainId(uint256 chainId);
error InvalidReceiver();
error InvalidDestinationChain();
error InvalidSendingToken();
error InvalidCaller();
error AlreadyInitialized();
error NotInitialized();
error OnlyContractOwner();
error CannotAuthoriseSelf();
error RecoveryAddressCannotBeZero();
error CannotDepositNativeToken();
error InvalidCallData();
error NativeAssetNotSupported();
error UnAuthorized();
error NoSwapFromZeroBalance();
error InvalidFallbackAddress();
error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
error InsufficientBalance(uint256 required, uint256 balance);
error ZeroAmount();
error InvalidFee();
error InformationMismatch();
error NotAContract();
error NotEnoughBalance(uint256 requested, uint256 available);

File 3 of 8 : IDiamondCut.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

interface IDiamondCut {
    enum FacetCutAction {
        Add,
        Replace,
        Remove
    }
    // Add=0, Replace=1, Remove=2

    struct FacetCut {
        address facetAddress;
        FacetCutAction action;
        bytes4[] functionSelectors;
    }

    /// @notice Add/replace/remove any number of functions and optionally execute
    ///         a function with delegatecall
    /// @param _diamondCut Contains the facet addresses and function selectors
    /// @param _init The address of the contract or facet to execute _calldata
    /// @param _calldata A function call, including function selector and arguments
    ///                  _calldata is executed with delegatecall on _init
    function diamondCut(
        FacetCut[] calldata _diamondCut,
        address _init,
        bytes calldata _calldata
    ) external;

    event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}

File 4 of 8 : IDiamondLoupe.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

// A loupe is a small magnifying glass used to look at diamonds.
// These functions look at diamonds
interface IDiamondLoupe {
    /// These functions are expected to be called frequently
    /// by tools.

    struct Facet {
        address facetAddress;
        bytes4[] functionSelectors;
    }

    /// @notice Gets all facet addresses and their four byte function selectors.
    /// @return facets_ Facet
    function facets() external view returns (Facet[] memory facets_);

    /// @notice Gets all the function selectors supported by a specific facet.
    /// @param _facet The facet address.
    /// @return facetFunctionSelectors_
    function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_);

    /// @notice Get all the facet addresses used by a diamond.
    /// @return facetAddresses_
    function facetAddresses() external view returns (address[] memory facetAddresses_);

    /// @notice Gets the facet that supports the given selector.
    /// @dev If facet is not found return address(0).
    /// @param _functionSelector The function selector.
    /// @return facetAddress_ The facet address.
    function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_);
}

File 5 of 8 : IERC165.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

interface IERC165 {
    /// @notice Query if a contract implements an interface
    /// @param interfaceId The interface identifier, as specified in ERC-165
    /// @dev Interface identification is specified in ERC-165. This function
    ///  uses less than 30,000 gas.
    /// @return `true` if the contract implements `interfaceID` and
    ///  `interfaceID` is not 0xffffffff, `false` otherwise
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 6 of 8 : LibBytes.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

library LibBytes {
    // solhint-disable no-inline-assembly

    // LibBytes specific errors
    error SliceOverflow();
    error SliceOutOfBounds();
    error AddressOutOfBounds();
    error UintOutOfBounds();

    // -------------------------

    function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
        bytes memory tempBytes;

        assembly {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
            tempBytes := mload(0x40)

            // Store the length of the first bytes array at the beginning of
            // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

            // Maintain a memory counter for the current write location in the
            // temp bytes array by adding the 32 bytes for the array length to
            // the starting location.
            let mc := add(tempBytes, 0x20)
            // Stop copying when the memory counter reaches the length of the
            // first bytes array.
            let end := add(mc, length)

            for {
                // Initialize a copy counter to the start of the _preBytes data,
                // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                // Write the _preBytes data into the tempBytes memory 32 bytes
                // at a time.
                mstore(mc, mload(cc))
            }

            // Add the length of _postBytes to the current length of tempBytes
            // and store it as the new length in the first 32 bytes of the
            // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            // Move the memory counter back from a multiple of 0x20 to the
            // actual end of the _preBytes data.
            mc := end
            // Stop copying when the memory counter reaches the new combined
            // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            // Update the free-memory pointer by padding our last write location
            // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
            // next 32 byte block, then round down to the nearest multiple of
            // 32. If the sum of the length of the two arrays is zero then add
            // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(
                0x40,
                and(
                    add(add(end, iszero(add(length, mload(_preBytes)))), 31),
                    not(31) // Round down to the nearest 32 bytes.
                )
            )
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
            // Read the first 32 bytes of _preBytes storage, which is the length
            // of the array. (We don't need to use the offset into the slot
            // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
            // Arrays of 31 bytes or less have an even value in their slot,
            // while longer arrays have an odd value. The actual length is
            // the slot divided by two for odd values, and the lowest order
            // byte divided by two for even values.
            // If the slot is even, bitwise and the slot with 255 and divide by
            // two to get the length. If the slot is odd, bitwise and the slot
            // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
                // Since the new array still fits in the slot, we just need to
                // update the contents of the slot.
                // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                    _preBytes.slot,
                    // all the modifications to the slot are inside this
                    // next block
                    add(
                        // we can just add to the slot contents because the
                        // bytes we want to change are the LSBs
                        fslot,
                        add(
                            mul(
                                div(
                                    // load the bytes from memory
                                    mload(add(_postBytes, 0x20)),
                                    // zero all bytes to the right
                                    exp(0x100, sub(32, mlength))
                                ),
                                // and now shift left the number of bytes to
                                // leave space for the length in the slot
                                exp(0x100, sub(32, newlength))
                            ),
                            // increase length by the double of the memory
                            // bytes length
                            mul(mlength, 2)
                        )
                    )
                )
            }
            case 1 {
                // The stored value fits in the slot, but the combined value
                // will exceed it.
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // The contents of the _postBytes array start 32 bytes into
                // the structure. Our first read should obtain the `submod`
                // bytes that can fit into the unused space in the last word
                // of the stored array. To get this, we read 32 bytes starting
                // from `submod`, so the data we read overlaps with the array
                // contents by `submod` bytes. Masking the lowest-order
                // `submod` bytes allows us to add that value directly to the
                // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(
                    sc,
                    add(
                        and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
                        and(mload(mc), mask)
                    )
                )

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
                // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

                // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

                // Copy over the first `submod` bytes of the new data as in
                // case 1 above.
                let slengthmod := mod(slength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(
        bytes memory _bytes,
        uint256 _start,
        uint256 _length
    ) internal pure returns (bytes memory) {
        if (_length + 31 < _length) revert SliceOverflow();
        if (_bytes.length < _start + _length) revert SliceOutOfBounds();

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
                // Get a location of some free memory and store it in tempBytes as
                // Solidity does for memory variables.
                tempBytes := mload(0x40)

                // The first word of the slice result is potentially a partial
                // word read from the original array. To read it, we calculate
                // the length of that partial word and start copying that many
                // bytes into the array. The first word we copy will start with
                // data we don't care about, but the last `lengthmod` bytes will
                // land at the beginning of the contents of the new array. When
                // we're done copying, we overwrite the full first word with
                // the actual length of the slice.
                let lengthmod := and(_length, 31)

                // The multiplication in the next line is necessary
                // because when slicing multiples of 32 bytes (lengthmod == 0)
                // the following copy loop was copying the origin's length
                // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                    // The multiplication in the next line has the same exact purpose
                    // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

                //update free-memory pointer
                //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
                //zero out the 32 bytes slice we are about to return
                //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        if (_bytes.length < _start + 20) {
            revert AddressOutOfBounds();
        }
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
        if (_bytes.length < _start + 1) {
            revert UintOutOfBounds();
        }
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
        if (_bytes.length < _start + 2) {
            revert UintOutOfBounds();
        }
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
        if (_bytes.length < _start + 4) {
            revert UintOutOfBounds();
        }
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
        if (_bytes.length < _start + 8) {
            revert UintOutOfBounds();
        }
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
        if (_bytes.length < _start + 12) {
            revert UintOutOfBounds();
        }
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
        if (_bytes.length < _start + 16) {
            revert UintOutOfBounds();
        }
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
        if (_bytes.length < _start + 32) {
            revert UintOutOfBounds();
        }
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

            // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
                // cb is a circuit breaker in the for loop since there's
                //  no said feature for inline assembly loops
                // cb = 1 - don't breaker
                // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                        // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
        bool success = true;

        assembly {
            // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
            // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

            // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
                // slength can contain both the length and contents of the array
                // if length < 32 bytes so let's prepare for that
                // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                        // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                            // unsuccess:
                            success := 0
                        }
                    }
                    default {
                        // cb is a circuit breaker in the for loop since there's
                        //  no said feature for inline assembly loops
                        // cb = 1 - don't breaker
                        // cb = 0 - break
                        let cb := 1

                        // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                        // the next line is the loop condition:
                        // while(uint256(mc < end) + cb == 2)
                        // solhint-disable-next-line no-empty-blocks
                        for {

                        } eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                                // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
                // unsuccess:
                success := 0
            }
        }

        return success;
    }
}

File 7 of 8 : LibDiamond.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { OnlyContractOwner } from "../Errors/GenericErrors.sol";

/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibDiamond {
    bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");

    // Diamond specific errors
    error IncorrectFacetCutAction();
    error NoSelectorsInFace();
    error FunctionAlreadyExists();
    error FacetAddressIsZero();
    error FacetAddressIsNotZero();
    error FacetContainsNoCode();
    error FunctionDoesNotExist();
    error FunctionIsImmutable();
    error InitZeroButCalldataNotEmpty();
    error CalldataEmptyButInitNotZero();
    error InitReverted();
    // ----------------

    struct FacetAddressAndPosition {
        address facetAddress;
        uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
    }

    struct FacetFunctionSelectors {
        bytes4[] functionSelectors;
        uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
    }

    struct DiamondStorage {
        // maps function selector to the facet address and
        // the position of the selector in the facetFunctionSelectors.selectors array
        mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
        // maps facet addresses to function selectors
        mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
        // facet addresses
        address[] facetAddresses;
        // Used to query if a contract implements an interface.
        // Used to implement ERC-165.
        mapping(bytes4 => bool) supportedInterfaces;
        // owner of the contract
        address contractOwner;
    }

    function diamondStorage() internal pure returns (DiamondStorage storage ds) {
        bytes32 position = DIAMOND_STORAGE_POSITION;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            ds.slot := position
        }
    }

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    function setContractOwner(address _newOwner) internal {
        DiamondStorage storage ds = diamondStorage();
        address previousOwner = ds.contractOwner;
        ds.contractOwner = _newOwner;
        emit OwnershipTransferred(previousOwner, _newOwner);
    }

    function contractOwner() internal view returns (address contractOwner_) {
        contractOwner_ = diamondStorage().contractOwner;
    }

    function enforceIsContractOwner() internal view {
        if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
    }

    event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);

    // Internal function version of diamondCut
    function diamondCut(
        IDiamondCut.FacetCut[] memory _diamondCut,
        address _init,
        bytes memory _calldata
    ) internal {
        for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
            IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
            if (action == IDiamondCut.FacetCutAction.Add) {
                addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Replace) {
                replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else if (action == IDiamondCut.FacetCutAction.Remove) {
                removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
            } else {
                revert IncorrectFacetCutAction();
            }
            unchecked {
                ++facetIndex;
            }
        }
        emit DiamondCut(_diamondCut, _init, _calldata);
        initializeDiamondCut(_init, _calldata);
    }

    function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsZero();
        }
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            if (!LibUtil.isZeroAddress(oldFacetAddress)) {
                revert FunctionAlreadyExists();
            }
            addFunction(ds, selector, selectorPosition, _facetAddress);
            unchecked {
                ++selectorPosition;
                ++selectorIndex;
            }
        }
    }

    function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsZero();
        }
        uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
        // add new facet address if it does not exist
        if (selectorPosition == 0) {
            addFacet(ds, _facetAddress);
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            if (oldFacetAddress == _facetAddress) {
                revert FunctionAlreadyExists();
            }
            removeFunction(ds, oldFacetAddress, selector);
            addFunction(ds, selector, selectorPosition, _facetAddress);
            unchecked {
                ++selectorPosition;
                ++selectorIndex;
            }
        }
    }

    function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
        if (_functionSelectors.length == 0) {
            revert NoSelectorsInFace();
        }
        DiamondStorage storage ds = diamondStorage();
        // if function does not exist then do nothing and return
        if (!LibUtil.isZeroAddress(_facetAddress)) {
            revert FacetAddressIsNotZero();
        }
        for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
            bytes4 selector = _functionSelectors[selectorIndex];
            address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
            removeFunction(ds, oldFacetAddress, selector);
            unchecked {
                ++selectorIndex;
            }
        }
    }

    function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
        enforceHasContractCode(_facetAddress);
        ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
        ds.facetAddresses.push(_facetAddress);
    }

    function addFunction(
        DiamondStorage storage ds,
        bytes4 _selector,
        uint96 _selectorPosition,
        address _facetAddress
    ) internal {
        ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
        ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
    }

    function removeFunction(
        DiamondStorage storage ds,
        address _facetAddress,
        bytes4 _selector
    ) internal {
        if (LibUtil.isZeroAddress(_facetAddress)) {
            revert FunctionDoesNotExist();
        }
        // an immutable function is a function defined directly in a diamond
        if (_facetAddress == address(this)) {
            revert FunctionIsImmutable();
        }
        // replace selector with last selector, then delete last selector
        uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
        uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
        // if not the same then replace _selector with lastSelector
        if (selectorPosition != lastSelectorPosition) {
            bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
            ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
            ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
        }
        // delete the last selector
        ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
        delete ds.selectorToFacetAndPosition[_selector];

        // if no more selectors for facet address then delete the facet address
        if (lastSelectorPosition == 0) {
            // replace facet address with last facet address and delete last facet address
            uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
            uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
            if (facetAddressPosition != lastFacetAddressPosition) {
                address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
                ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
                ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
            }
            ds.facetAddresses.pop();
            delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
        }
    }

    function initializeDiamondCut(address _init, bytes memory _calldata) internal {
        if (LibUtil.isZeroAddress(_init)) {
            if (_calldata.length != 0) {
                revert InitZeroButCalldataNotEmpty();
            }
        } else {
            if (_calldata.length == 0) {
                revert CalldataEmptyButInitNotZero();
            }
            if (_init != address(this)) {
                enforceHasContractCode(_init);
            }
            // solhint-disable-next-line avoid-low-level-calls
            (bool success, bytes memory error) = _init.delegatecall(_calldata);
            if (!success) {
                if (error.length > 0) {
                    // bubble up the error
                    revert(string(error));
                } else {
                    revert InitReverted();
                }
            }
        }
    }

    function enforceHasContractCode(address _contract) internal view {
        uint256 contractSize;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            contractSize := extcodesize(_contract)
        }
        if (contractSize == 0) {
            revert FacetContainsNoCode();
        }
    }
}

File 8 of 8 : LibUtil.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

import "./LibBytes.sol";

library LibUtil {
    using LibBytes for bytes;

    function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
        // If the _res length is less than 68, then the transaction failed silently (without a revert message)
        if (_res.length < 68) return "Transaction reverted silently";
        bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
        return abi.decode(revertData, (string)); // All that remains is the revert string
    }

    /// @notice Determines whether the given address is the zero address
    /// @param addr The address to verify
    /// @return Boolean indicating if the address is the zero address
    function isZeroAddress(address addr) internal pure returns (bool) {
        return addr == address(0);
    }
}

Settings
{
  "remappings": [
    "@axelar-network/=node_modules/@axelar-network/",
    "@connext/=node_modules/@connext/",
    "@eth-optimism/=node_modules/@hop-protocol/sdk/node_modules/@eth-optimism/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@uniswap/=node_modules/@uniswap/",
    "create3-factory/=lib/create3-factory/src/",
    "ds-test/=lib/ds-test/src/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat-deploy/=node_modules/hardhat-deploy/",
    "hardhat/=node_modules/hardhat/",
    "lifi/=src/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"bytes4","name":"_functionSelector","type":"bytes4"}],"name":"facetAddress","outputs":[{"internalType":"address","name":"facetAddress_","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"facetAddresses","outputs":[{"internalType":"address[]","name":"facetAddresses_","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_facet","type":"address"}],"name":"facetFunctionSelectors","outputs":[{"internalType":"bytes4[]","name":"facetFunctionSelectors_","type":"bytes4[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"facets","outputs":[{"components":[{"internalType":"address","name":"facetAddress","type":"address"},{"internalType":"bytes4[]","name":"functionSelectors","type":"bytes4[]"}],"internalType":"struct IDiamondLoupe.Facet[]","name":"facets_","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"_interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]

608060405234801561001057600080fd5b506107e2806100206000396000f3fe608060405234801561001057600080fd5b50600436106100675760003560e01c80637a0ed627116100505780637a0ed627146100fa578063adfca15e1461010f578063cdffacc61461012f57600080fd5b806301ffc9a71461006c57806352ef6b2c146100e5575b600080fd5b6100d061007a36600461055d565b7fffffffff000000000000000000000000000000000000000000000000000000001660009081527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131f602052604090205460ff1690565b60405190151581526020015b60405180910390f35b6100ed6101cb565b6040516100dc91906105a6565b61010261025d565b6040516100dc919061065d565b61012261011d366004610705565b61045d565b6040516100dc919061073b565b6101a661013d36600461055d565b7fffffffff000000000000000000000000000000000000000000000000000000001660009081527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c602052604090205473ffffffffffffffffffffffffffffffffffffffff1690565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100dc565b606060007fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c6002810180546040805160208084028201810190925282815293945083018282801561025257602002820191906000526020600020905b815473ffffffffffffffffffffffffffffffffffffffff168152600190910190602001808311610227575b505050505091505090565b7fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131e546060907fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c908067ffffffffffffffff8111156102bd576102bd61074e565b60405190808252806020026020018201604052801561030357816020015b6040805180820190915260008152606060208201528152602001906001900390816102db5790505b50925060005b818110156104575760008360020182815481106103285761032861077d565b9060005260206000200160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050808583815181106103685761036861077d565b60209081029190910181015173ffffffffffffffffffffffffffffffffffffffff928316905290821660009081526001860182526040908190208054825181850281018501909352808352919290919083018282801561042957602002820191906000526020600020906000905b82829054906101000a900460e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916815260200190600401906020826003010492830192600103820291508084116103d65790505b50505050508583815181106104405761044061077d565b602090810291909101810151015250600101610309565b50505090565b73ffffffffffffffffffffffffffffffffffffffff811660009081527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131d602090815260409182902080548351818402810184019094528084526060937fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c939092919083018282801561055057602002820191906000526020600020906000905b82829054906101000a900460e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916815260200190600401906020826003010492830192600103820291508084116104fd5790505b5050505050915050919050565b60006020828403121561056f57600080fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461059f57600080fd5b9392505050565b6020808252825182820181905260009190848201906040850190845b818110156105f457835173ffffffffffffffffffffffffffffffffffffffff16835292840192918401916001016105c2565b50909695505050505050565b600081518084526020808501945080840160005b838110156106525781517fffffffff000000000000000000000000000000000000000000000000000000001687529582019590820190600101610614565b509495945050505050565b60006020808301818452808551808352604092508286019150828160051b87010184880160005b838110156106f7578883037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00185528151805173ffffffffffffffffffffffffffffffffffffffff1684528701518784018790526106e487850182610600565b9588019593505090860190600101610684565b509098975050505050505050565b60006020828403121561071757600080fd5b813573ffffffffffffffffffffffffffffffffffffffff8116811461059f57600080fd5b60208152600061059f6020830184610600565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea2646970667358221220925a979874a1ef1fe5f588738f22d73e00587a0a7bdf2914b258f46ecf78cc6a64736f6c63430008110033

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100675760003560e01c80637a0ed627116100505780637a0ed627146100fa578063adfca15e1461010f578063cdffacc61461012f57600080fd5b806301ffc9a71461006c57806352ef6b2c146100e5575b600080fd5b6100d061007a36600461055d565b7fffffffff000000000000000000000000000000000000000000000000000000001660009081527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131f602052604090205460ff1690565b60405190151581526020015b60405180910390f35b6100ed6101cb565b6040516100dc91906105a6565b61010261025d565b6040516100dc919061065d565b61012261011d366004610705565b61045d565b6040516100dc919061073b565b6101a661013d36600461055d565b7fffffffff000000000000000000000000000000000000000000000000000000001660009081527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c602052604090205473ffffffffffffffffffffffffffffffffffffffff1690565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100dc565b606060007fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c6002810180546040805160208084028201810190925282815293945083018282801561025257602002820191906000526020600020905b815473ffffffffffffffffffffffffffffffffffffffff168152600190910190602001808311610227575b505050505091505090565b7fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131e546060907fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c908067ffffffffffffffff8111156102bd576102bd61074e565b60405190808252806020026020018201604052801561030357816020015b6040805180820190915260008152606060208201528152602001906001900390816102db5790505b50925060005b818110156104575760008360020182815481106103285761032861077d565b9060005260206000200160009054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050808583815181106103685761036861077d565b60209081029190910181015173ffffffffffffffffffffffffffffffffffffffff928316905290821660009081526001860182526040908190208054825181850281018501909352808352919290919083018282801561042957602002820191906000526020600020906000905b82829054906101000a900460e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916815260200190600401906020826003010492830192600103820291508084116103d65790505b50505050508583815181106104405761044061077d565b602090810291909101810151015250600101610309565b50505090565b73ffffffffffffffffffffffffffffffffffffffff811660009081527fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131d602090815260409182902080548351818402810184019094528084526060937fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c131c939092919083018282801561055057602002820191906000526020600020906000905b82829054906101000a900460e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916815260200190600401906020826003010492830192600103820291508084116104fd5790505b5050505050915050919050565b60006020828403121561056f57600080fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461059f57600080fd5b9392505050565b6020808252825182820181905260009190848201906040850190845b818110156105f457835173ffffffffffffffffffffffffffffffffffffffff16835292840192918401916001016105c2565b50909695505050505050565b600081518084526020808501945080840160005b838110156106525781517fffffffff000000000000000000000000000000000000000000000000000000001687529582019590820190600101610614565b509495945050505050565b60006020808301818452808551808352604092508286019150828160051b87010184880160005b838110156106f7578883037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc00185528151805173ffffffffffffffffffffffffffffffffffffffff1684528701518784018790526106e487850182610600565b9588019593505090860190600101610684565b509098975050505050505050565b60006020828403121561071757600080fd5b813573ffffffffffffffffffffffffffffffffffffffff8116811461059f57600080fd5b60208152600061059f6020830184610600565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fdfea2646970667358221220925a979874a1ef1fe5f588738f22d73e00587a0a7bdf2914b258f46ecf78cc6a64736f6c63430008110033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.